Algorytm podziału i ograniczeń dla problemu rozkroju niegilotynowego /
KIERKOSZ, Igor. Politechnika Koszalińska - Wydział Budownictwa i Inżynierii Środowiska, Katedra Matematyki 1996 - .
Algorytm podziału i ograniczeń dla problemu rozkroju niegilotynowego / Igor Kierkosz, Maciej Łuczak.
W pracy przedstawiono algorytm optymalizacji rozkroju prostokątnej płyty na szereg prostokątnych elementów przy założeniu cięcia niegilotynowego oraz ograniczeniu na liczbę powtórzeń danego typu elementów w generowanych wzorach rozkroju. W proponowanym algorytmie przeszukiwanie przestrzeni dopuszczalnych rozwiązań odbywa się w oparciu o metodę podziału i ograniczeń. W pracy zamieszczono również wyniki obliczeń dla przykładowych zadań rozkroju dwuwymiarowego. The paper presents an algorithm for two-dimensional non-guillotine cutting stock problem. The problem consists in cutting many rectangular pieces, from a single rectangular sheet in such a way that the amount of trim loss is minimized. Moreover, there is a constraint on the maximum number of each type of piece that is to be produced. The proposed algorithm is based on a branch and bound method. Numerical examples to illustrate the proposed algorithm are solved.
Algorytm podziału i ograniczeń dla problemu rozkroju niegilotynowego / Igor Kierkosz, Maciej Łuczak.
W pracy przedstawiono algorytm optymalizacji rozkroju prostokątnej płyty na szereg prostokątnych elementów przy założeniu cięcia niegilotynowego oraz ograniczeniu na liczbę powtórzeń danego typu elementów w generowanych wzorach rozkroju. W proponowanym algorytmie przeszukiwanie przestrzeni dopuszczalnych rozwiązań odbywa się w oparciu o metodę podziału i ograniczeń. W pracy zamieszczono również wyniki obliczeń dla przykładowych zadań rozkroju dwuwymiarowego. The paper presents an algorithm for two-dimensional non-guillotine cutting stock problem. The problem consists in cutting many rectangular pieces, from a single rectangular sheet in such a way that the amount of trim loss is minimized. Moreover, there is a constraint on the maximum number of each type of piece that is to be produced. The proposed algorithm is based on a branch and bound method. Numerical examples to illustrate the proposed algorithm are solved.
